physics

physics

Rabu, 25 Maret 2015

PRINSIP KERJA OVEN MICROWAVE


Anda pasti pernah melihat oven microwave kan?? Jika belum, pernatikan gambar ini. 
 
 
 
Oven microwave merupakan perangkat yang dengan cepat telah menjadi alat masak populer. kelebuhannya adalah menghemat waktu dan hemat listrik, karena tidak perlu dipanaskan terlebih dahulu seperti alat masak lainnya yang perlu dipanaskan terlebih dahulu. Prinsip kerja dari alat ini (oven microwave) adalah perpindahan kalor secara radiasi.
Gelombang micro, salah satu bentuk gelombang elektromagnetik yang memiliki sifat mudah diserap oleh molekul-molekul air (H2O). Gelombang micro dalam  sebuah oven microwave dihasilkan secara elektronik dan didistribusikan melalui pemantulan oleh kipas dan dinding-dinding metal. Karena dinding-dinding metal ini memantulkan energi radiasi gelombang micro, maka dinding ini tidak menjadi panas. Jadi, oven microwave sangat efisien, karena hanya memanaskan makanan saja.
Di dalam makanan, gelombang micro menyebar melalui proses perpindahan kalor secara konduksi. Oven microwave cenderung lebih cepat memasak makanan yang berair dibandingkan dengan makanan kering, karena di dalam makanan berair, lebih banyak air yang mampu menyerap gelombang micro. Namun demikian, gelombang micro tidak mampu menembus makanan cukup dalam, sehingga untuk memasak makanan yang tebal, sebaiknya makanan tersebut dipotong-potong dulu menjadi lebih kecil.
gelombang micro dapat melalui bahan kaca, kertas, keramik, dan plastik. Sehingga wadah-wadah yang terbuat dari benda ini cukup aman untuk digunakan dalam sebuah oven microwave. Perhatikan, biasanya pada sebuah wadah yang diberikan informasi apakah aman atau tidak. wadah-wadah yang terbuat dari logam tidak cocok untuk dipakai dalm oven ini karena sifatnya yang memantulkan radiasi gelombang micro.
Bagian tutup oven microwave, atau disebut pintu di mana kita melihat makanan yang sedang dimasak, memiliki dasain yang cukup aman sehingga tidak terjadi kebocoran gelombang micro. Kebocoran gelombang micro menyebabkan proses memasak mejadi tidak efektif dan dapat menyebabkan proses memasak jadi efektif dan dapat menyebabkan gangguan kesehatan bagi seseorang yang berada di dekatnya. Pintu oven microwave juga dibuat secara otomatis sebagai sakelar. sehingga ketika pintu terbuka otomatis oven tidak bekerja.
Oven microwave ditemukan secara tidak adil sengaja oleh seseorang teknisi Percy L. Spencer dari Raytheon Company. Pada tahun 1945. Ketika ia sedang melakukan percobaan untuk menghasilkan gelombang radio bagi sistem radar. Ketika sedang berdiri di dekat pembangkit gelombang micro, ia mendapati bahwa permen yang disakunya meleleh meskipun ia tidak merasakan adanya panas. Penemuan ini akhirnya dikembangkan dan pada awal tahun 1950 diperkenalkanlah oven microwave yang pertama.

KOMPRESOR

  1. PENGERTIAN KOMPRESOR

Perlu diketahui bahwa dalam kerja kompresor banyak dipengaruhi oleh beberapa penunjang, antara lain tentang:
  1. Thermodinamika
  2. Perpindahan Panas
  3. Pendingin
Sebelum memahami beberapa penunjang tersebut, terlebih dahulu harus mengetahui tentang arti dari kompresor.
Diketahui kompresor adalah alat yang berfungsi untuk penghasil dan penyimpan udara bertekanan. jenis kompresor ini dapat dibagi dalam dua jenis, yaitu kompresor positif dan kompresor nonpositif. Kompresor positif itu dimana gas diisap masuk kedalam silinder dan dikompresikan., dan untuk kompresor non positif itu dimana gas yang diisap masuk dipercepat aliranya oleh sebuah impeller yang kemudian mengubah energi kinetic untuk menaikkan tekanan.
Menurut metode kompresi, kompresor dapat digolongkan menjadi dua, yaitu:
  1. metode kompresi positif
    1. kompresor torak, bolak-balik
    2. kompresi torak tingkat ganda, bolak-balik
    3. kompresor putar
    4. kompresor sekrup
  2. metode kompresi sentrifugal
    1. konmpresor centrifugal satu tingkat
    2. kompresor sentrifugal tingkat ganda
Menurut penggolongan bentuk kompresor ada tiga jenis kompresor, yaitu:
  1. jenis vertical
  2. jenis horizontal
  3. jenis silinder banyak (jenis –V, jenis –W, dan jenis –VV)
Menurut penggolongan kecepatan putar, yaitu:
  1. jenis kecepatan rendah
  2. jenis kecepatan tinggi
Menurut penggolongan gas refrigerant, yaitu:
  1. kompresor ammonia
  2. kompresor gas Freon
  3. kompresor CO2
Menurut penggolongan konstruksi, yaitu:
  1. jenis terbuka
  2. jenis hermatik
  3. jenis semi hermatik
B. PROSES KOMPRESI KOMPRESOR

Ada tiga macam proses kompresi, yaitu:
  1. kompresi isothermal
Dalam kompresi isothermal, temperature gas tidak berubah, sehingga temperature gas pada akhir langkah kompresi sama dengan temperature gas pada awal kompresi. Dalam hal ini kenaikan temperature gas dapat dicegah, karena panas yang timbul selama proses kompresi, segera diserap sempurna oleh fluida pendinginan melalui silinder. Namun demikian, proses kompresi isothermal sulit dilaksanakan.
Tetapi dengan kompresi ishotermal kerja yang digunakan adalah yang paling endah jika dibandingkana dengan jenis proses kompresi lain. Hubungan antara
Dimana:
P = Tekanan gas absolute (Kg/cm2)
V = Volume gas (m3)
Sedangkan subskrip 1 dan 2, berturut-turut menyatakan kondisi gas pada awal dan akhir kompresi.
  1. kompresi politropik
Dalam kompresi politropik temperature gas setelah kompresi lebih tinggi dari pada temperature pada awal langkah kompresi, meskipun selama proses tersebut berlangsung terjadi perpindahan kalor dari silinder sekitarnya. Kompresi gas refrigerant didalam kompresor, dalam keadaan sebenarnya, kira-kira mendekati proses politropik tersebut diaatas. Kerja yang diperlukan untuk kompresi politropik lebih besar daari pada untuk kompresi ishotermal, tetapi lebih rendah dari pada untuk kompresi adabatik.
Disamping itu kenaikan tekanan yang diperoleh dengan kompresi politropik lebih besar dari pada dengan kompresi isothermal, lebih rendah dari pada dengan kompresi adibatik.
Untuk kompresi politropik, hubungan antara tekanan dan volume pada awal dan akhir proses kompresi adalh sebagai berikut:
Dimana:
  1. kompresi adiabatic
proses kompresi adiabatic adalah proses kompresi tanpa perpindahan kalor dari gas dan sekitarnya, yaitu dengan jalan memberikan isolasi panas secara sempurna pada dinding silinder. Dengan kompresi adiabatic, temperature gas akan naik dan lebih tinggi dari pada kenaikan yang terjadi dengan kompresi politropik.
Disamping itu, dengan kompresi adiabatic kerja yang diperlukan untuk kompresi akan lebih besar, tetapi akan diperoleh kenaikan tekanan yang tinggi. Hubungan antara tekanan dan volumepada awal langkah kompresi dan pada ekhir kompresi dapat dinyatakan sebagai
Dimana:
Proses kompresi didalam kompresor, dalam kenyataanya bukanlah kompresi adiabatic maupun kompresi isothermal akan tetapi kompresi politropik. Namun, karena prosesnya mendekati kompresi adiabatic, maka dalam perhitunganya menggunakan diagram mullier proses kompresi tersebut tidak dianggap adiabatic.

C. SIKLUS KERJA KOMPRESOR
Apabila gas refrigerant diisap masuk dan dikompresikan didalam silinder kompresor mesin refrigerasi, perubahan tekanan gas refrigerant terjadi sesuai dengan perubahan volume yang diakibatkan oleh gerak torak didalam silinder tersebut.
Gambar dibawah ini menunjukkan perubahan tekanan gas didalam silinder selama langkah uap dan langkah kompresi.
  1. Langkah Isap
    1. Pada waktu torak berda pada titik mati atas ( titik A) katup buang dan katup isap ada dalam keadaan menutup. Kemudian, pada waktu torak mulai bergerak dari TMA ke TMB katup isap akan membuka.
    2. Selama gerakan torak dariTMA ke titik B, gas yang ada dalam silinder akan berexpansi, tetapi gas sebenarnya baru terisap masuk kedalam silinder. Setelah tekanan dalam silinder tersebut turun mencapai tekanan penguapan. Oleh karena itu, selama gerakan torak dari titik A ke titik B, tidak terjadi pengisapan (langkah bebas/idle stroke).
    3. Maka baru setelah torak mencapai titik B dan meneruskan gerakanya menuju TMB (titik C), gas refrigerant mulai diisap masuk kedalam silinder. Pada waktu torak berada diTMB katup isap menutup dan proses pengisapan gas refrigerant selesai.


    1. Hasil gambar untuk siklus kompresor bolak balik
Gambar. Siklus kompresor (gerakan torak dan perubahan tekanan dalam silinder)
  1. Langkah Kompresi
    1. Pada waktu torak berada pada di TMB (titik C), baik katup isap maupun katup buang ada dalam keadaan menutup.
    2. Selanjutnya, selama gerakan total dari TMB ke titik D, gas didalam silinder mengalami proses kompresi sehimgga tekanan gas akan naik secara berangsur-angsur.
    3. Apabila telah dicapai tekanan buang (pengeluaran ), pada titik d, katup buang ,mulai membuka sehingga gas akan keluar dari dalam silinder.
    4. Selama gerakan total dari titik D ke TMA (titik A), pengeluaran gas refrigerant berlangsung pada tekanan konstan. Proses kompresi selesai pada waktu berada di TMA.
Seperti diterangkan diatas, selama langkah hisap terdapat langkah bebas (idle stroke) sehingga jumlah gas yang terisap berkurang. Dengan demikian, efisiensi volumenya akan turun. Oleh karena itu, hendaknya diusahakan agar panjang langkah bebas dapat dibuat sependek-pendeknya sehingga pengisapan gas masuk kompresor dapat dimulai seawal mungkin.
Gambar. Siklus kompresi
Persamaan efisiensi kompresi kompresor:

Makin tinggi kecepatan putar kompresor makin rendah efisiensi kompresi. Oleh karena itu, konstruksi katup harus disesuaikan dengan kondisi operasnya, supaya dapat diperoleh efisiensi kompresi yang tinggi.
D. HUKUM BOYLE

Hukum ini diformulasikan oleh Robert Boyle pada tahun 1662. Hukum ini berbunyi, ”Tekanan mutlak suatu massa dari gas sempurna berubah secara berbanding terbalik terhadap volumenya, jika temperaturnya tetap”.
Secara matematik bisa ditulis:

Atau:

dimana notasi 1, 2 dan 3 mengacu kepada kondisi yang berbeda.
E. HUKUM GAY LUSSAC
Hukum ini berbunyi “tekanan mutlak dari suatu massa gas sempurna berubah berbanding langsung dengan temperature, jika volumenya tetap.”
Secara matematik:

dimana notasi 1, 2 dan 3 mengacu kepada kondisi yang berbeda.

Prinsip Kerja Motor Bakar

Pengertian Motor Bakar 
Motor bakar adalah mesin kalor atau mesin konversi energi yang mengubah energi kimia bahan bakar menjadi energi mekanik berupa kerja. Pada dasarnya mesin kalor (Heat Engine) dikategorikan menjadi dua (2), yaitu:

a)      External Combustion Engine
Yaitu hasil dari pembakaran udara dan bahan bakar memindahkan panas ke fluida kerja pada siklus. Dimana energi diberikan pada fluida kerja dari sumber luar seperti furnace, geothermal, reaktor nuklir, atau energi surya. Contoh mesin yang termasuk External Combustion Engine adalah turbin uap.

b)      Internal Combustion Engine
Dimana energi didapat dari pembakaran bahan bakar didalam batas sistem sehingga gas pembakaran yang terjadi sekaligus berfungsi sebagai fluida kerja. Contoh Internal Combustion Engine adalah Motor Bakar torak dan sistem turbin gas. Jadi motor bakar torak termasuk jenis Internal Combustion Engine.


Prinsip Kerja Motor Bakar 
Motor bakar torak menggunakan beberapa silinder yang didalamnya terdapat torak yang bergerak translasi bolak-balik
 ( reciprocating engine ). Didalam silinder itulah terjadi pembakaran antara bahan bakar dengan oksigen dari udara. Gas pembakaran yang dihasilkan oleh proses tersebut mampu menggerakkan torak yang dihubungkan dengan poros engkol oleh batang penghubung (batang penggerak). Gerak translasi torak tadi menyebabkan gerak rotasi pada poros engkol dan sebaliknya. Berdasarkan langkah kerjanya, motor bakar torak dibedakan menjadi motor bakar 4 langkah dan motor bakar dua langkah.

-
 Motor Bakar 4 Langkah
Pada motor bakar 4 langkah, setiap 1 siklus kerja memerlukan 4 kali langkah torak atau 2 kali putaran poros engkol, yaitu:
langkah Isap (Suction Stroke)           Torak bergerak dari posisi TMA (titik mati atas) ke TMB (titik mati bawah), dengan katup KI (katup isap) terbuka dan katup KB (katup buang) tertutup. Karena gerakan torak tersebut maka campuran udara dengan bahan bakar pada motor bensin atau udara saja pada motor diesel akan terhisap masuk ke dalam ruang bakar.
Langkah Kompresi (Compression Stroke)            Torak bergerak dari posisi TMB ke TMA dengan KI dan KB tertutup.Sehingga terjadi proses kompresi yang mengakibatkan tekanan dan temperatur di silinder naik.
           Langkah Ekspansi (Expansion Stroke) Sebelum posisi torak mencapai TMA pada langkah kompresi, pada motor bensin busi dinyalakan, atau pada motor diesel bahan bakar disemprotkan ke dalam ruang bakar sehingga terjadi proses pembakaran. Akibatnya tekanan dan temperatur di ruang bakar naik lebih tinggi. Sehingga torak mampu melakukan langkah kerja atau langkah ekspansi. Langkah kerja dimulai dari posisi torak pada TMA dan berakhir pada posisi TMB saat KB mulai terbuka pada langkah buang. Langkah ekspansi pada proses ini sering disebut dengan power stroke atau langkah kerja.
          Langkah Buang
Torak bergerak dari posisi TMB ke TMA dengan KI dan KB terbuka. Sehingga gas hasil pembakaran terbuang ke atmosfer.
 Skema masing masing langkah gerakan torak di dalam silinder motor bakar 4 langkah tersebut ditunjukkan dalam gambar berikut.



 -
 Motor Bakar 2 Langkah
Pada motor bakar 2 langkah, setiap satu siklus kerja memerlukan dua kali langkah torak atau satu kali putaran poros engkol. Motor bakar 2 langkah juga tidak memiliki katup isap (KI) atau katup buang (KB), dan digantikan oleh lubang isap dan lubang buang yang dibuat pada sisi-sisi silinder
 (cylinder liner). Secara teoritis, pada berat dan displacement yang sama, motor bakar 2 langkah menghasilkan daya sekitar dua kali lipat dari motor bakar 4 langkah, tetapi pada kenyataanya tidak demikian karena efisiensinya lebih rendah akibat pembuangan gas buang yang tidak kompit dan pembuangan sebagian bahan bakar bersama gas buang akibat panggunaan sistem lubang. Tetapi melihat konstruksinya yang lebih simpel dan murah serta memiliki rasio daya – berat dan daya – volume yang tinggi maka motor bakar 2 langkah cocok untuk sepeda motor dan alat-alat pemotong.
Dua langkah kerja motor bakar 2 langkah tersebut dijelaskan sebagai berikut :
a)    Langkah Torak dari TMA ke TMB
Sebelum torak mencapai TMA, busi dinyalakan pada motor bensin (atau bahan bakar dikompresikan pada motor diesel) sehingga terjadi proses pembakaran, karena proses ini torak terdorong dari TMA menuju TMB, langkah ini merupakan langkah kerja dari motor bakar 2 langkah. Saat menuju TMB, piston lebih dulu membuka lubang buang sehingga gas sisa pembakaran terbuang , setelah itu dengan gerakan piston yang menuju TMB, lubang isap terbuka, dan campuran udara bahan bakar pada motor bensin atau udara pada motor diesel akan masuk ke dalam silinder.
b)    Langkah Torak dari TMB ke TMA
Setelah torak mencapai TMB maka torak kembali menuju TMA. Dengan gerakan ini, sebagian gas sisa yang belum  terbuang akan didorong keluar sepenuhnya. Selain itu, gerakan piston yang turun menuju TMA menyebabkan terjadinya kompresi yang kemudian akan dilanjutkan dengan pembakaran setelah lubang isap tertutup oleh torak.
Skema masing-masing langkah gerakan torak di dalam silinder motor bakar 2 langkah tersebut ditunjukkan dalam gambar berikut.

Peningkatan Suhu

Pemanasan Ruangan.
pemanas ruangan
Jika kamu menghidupkan pemanasan di ruanganmu dan setelah satu jam kamu mematikannya, akankah energi total udara yang ada di dalam ruangan meningkat oleh pemanasan tersebut?

Jawaban:
Secara paradox ( berlawanan asas), jawaban yang benar adalah energi total udara di dalam ruangan ternyata tetap sama. Ketika suhu udara dinaikkan oleh pemanas, udara di dalam ruangan akan menyebar dan meloloskan sebagian kecil udara keluar melalui pori-pori dan retakkan di dinding. Kebocoran udara ini membawa serta energi yang dihasilkan oleh pemanasan.
Karena udara bertindak sebagai gas ideal, maka kandungan energi udara di dalam ruangan tidak akan tergantung pada suhu, jika tekanan udaranya tetap. Dari hubungan P.v=n.RT, kamu akan tahu bahwa penigkatan volume V  berbanding langsung dengan peningkata n suhu T, jika tekanan P tetap.

Pendingin Air Panas dan Air dingin.
Dua ember kayu yang sama (tanpa tutup) diletakkan di luar ruangan ketika udara sangat dingin. Ember A  berisi air panas dan ember B berisi air dingin dalam jumlah sama?
Di bawah kondisi tertentu, air panas akan mendingin lebih cepat daripada air dingin, bahkan air tersebut mulai membeku lebih dulu!
Pertama, perhatikan bahwa ember yang digunakan tidak mempunyai tutup, dan ingat bahwa kayu adalah konduktor termal yang sangat buruk. Argument berikut akan berikut akan berlaku untuk ember kayu, bukan ember yang terbuat dari bahan konduktor termal yang baik.
Pengaruh pendinginan yang utama merupakan evaporasi cepat dari permukaan atas dari air panas, diikuti oleh pencampuran yang signifikan antara air panas dan air yang lebih dingin, dari bagian atas sampai bagian bawah ember. Evaporasi dan konveksi menghasilkan perpindahan energi termal dengan kecepatan tinggi ke lingkungan sekitarnya jika suhu awalnya tinggi. Untuk ember-ember kayu ini, kecepatan perpindahan energi termal ini jauh lebih cepat dari kecepatan perpindahan panas yang dilakukan dengan proses konduksi melalui dinding kayu ember. Bahkan air panas dalam ember kayu akan berevaporasi sampai 26% dan menyisakan sedikit air untuk membeku.
Seperti dinyatakan sebelumnya, massa hilang dalam proses pendingingan yang disebabkan oleh evaporasi cukup besar. Contohnya: pendinginan air dari 1000C sampai 00C akan mengurangi massanya, dan 12% lainnya akan hilang dalam pembekuan. Total massa yang hilang adalah 16%+ 12% X (100-16)= 26 %.
Contoh pada Negara-negara yang mempunyai musim dingim yaitu,
Mobil tidak boleh dicuci dengan air panas, karena air panas akan cepat membeku

Memakai Topi pada musim dingin
pemakaian topi pada musim dingin
Mengapa orang harus memakai topi pada hari yang sangat dingin?
Pendinginan tubuh sampai sebesar 30% bisa berasal dari kepala. Memakai topi bisa mengurangi proses pendinginan ini dengan sangat efektif untuk menjaga tubuh agar tetap hangat. Secara tidak sengaja, Archimides mengira bahwa kepala merupakan penghantar dingin yang baik untuk tubuh.

Sinar Matahari
Siswa seringkali bertanya-tanya bagaimana udara bisa terasa sejuk atau bahkan dingin di musim dingin walaupun matahari bersinar terang. Apa pendapatmu?
sinar matahari di pagi hari
Setidaknya ada dua faktor yang menentukan suhu udara di ketinggian beberapa meter di atas tanah, yaitu suhu tanah dan besarnya energi matahari yang diperoleh secara langsung. Pada musim dingin, tanah sudah dingin sejak semula sehingga arus udara lebih hangat yang melewati tanah akan menjadi lebih dingin.
Pada musim dingin, matahari datang pada sudut lebih kecil dari Sembilan puluh derajat terhadap permukaan tanah, sehingga besarnya energi yang dilepaskan untuk menghangatkan tanah di musim dingin lebih sedikit jika dibandingkan dengan besarnya energi yang dilepaskan di musim panas. Kedua efek ini cenderung menjaga udara luar agar tetap dingin. Angin beku dan efek lain-lain juga terjadi.

Ingat: berlawanan dengan intuisi, sinar matahari ternyata sangat sedikit pemanasan udara melalui proses penyerapan langsung.

Termokopel


Pada dunia elektronika, termokopel adalah sensor suhu yang banyak digunakan untuk mengubah perbedaan panas dalam benda yang diukur temperaturnya menjadi perubahan potesial/ tegangan listrik (voltase). Termokopel yang sederhana dapat dipasang, dan memiliki jenis konektor standar yang sama, serta dapat mengukur temperatur dalam jangkauan suhu yang cukup besar dengan batas kesalahan pengukuran kurang dari 1 °C.

A. Prinsip Operasi

Pada tahun 1821, seorang fisikawan Estonia bernama Thomas Johann Seebeck menemukan bahwa sebuah konduktor (semacam logam) yang diberi perbedaan panas secara gradien akan menghasilkan tegangan listrik. Hal ini disebut sebagai efek termoelektrik. Untuk mengukur perubahan panas ini gabungan dua macam konduktor sekaligus sering dipakai pada ujung benda panas yang diukur. Konduktor tambahan ini kemudian akan mengalami gradiasi suhu, dan mengalami perubahan tegangan secara berkebalikan dengan perbedaan temperatur benda. Menggunakan logam yang berbeda untuk melengkapi sirkuit akan menghasilkan tegangan yang berbeda, meninggalkan perbedaan kecil tegangan memungkinkan kita melakukan pengukuran, yang bertambah sesuai temperatur. Perbedaan ini umumnya berkisar antara 1 hingga 70 microvolt tiap derajad celcius untuk kisaran yang dihasilkan kombinasi logam modern. Beberapa kombinasi menjadi populer sebagai standar industri, dilihat dari biaya, ketersediaanya, kemudahan, titik lebur, kemampuan kimia, stabilitas, dan hasil. Sangat penting diingat bahwa termokopel mengukur perbedaan temperatur di antara 2 titik, bukan temperatur absolut.
Pada banyak aplikasi, salah satu sambungan —sambungan yang dingin— dijaga sebagai temperatur referensi, sedang yang lain dihubungkan pada objek pengukuran. contoh, pada gambar di atas, hubungan dingin akan ditempatkan pada tembaga pada papan sirkuit. Sensor suhu yang lain akan mengukur suhu pada titik ini, sehingga suhu pada ujung benda yang diperiksa dapat dihitung. Termokopel dapat dihubungkan secara seri satu sama lain untuk membuat termopile, dimana tiap sambungan yang panas diarahkan ke suhu yang lebih tinggi dan semua sambungan dingin ke suhu yang lebih rendah. Dengan begitu, tegangan pada setiap termokopel menjadi naik, yang memungkinkan untuk digunakan pada tegangan yang lebih tinggi. Dengan adanya suhu tetapan pada sambungan dingin, yang berguna untuk pengukuran di laboratorium, secara sederhana termokopel tidak mudah dipakai untuk kebanyakan indikasi sambungan lansung dan instrumen kontrol. Mereka menambahkan sambungan dingin tiruan ke sirkuit mereka yaitu peralatan lain yang sensitif terhadap suhu (seperti termistor atau dioda) untuk mengukur suhu sambungan input pada peralatan, dengan tujuan khusus untuk mengurangi gradiasi suhu di antara ujung-ujungnya. Di sini, tegangan yang berasal dari hubungan dingin yang diketahui dapat disimulasikan, dan koreksi yang baik dapat diaplikasikan. Hal ini dikenal dengan kompensasi hubungan dingin. Biasanya termokopel dihubungkan dengan alat indikasi oleh kawat yang disebut kabel ekstensi atau kompensasi. Tujuannya sudah jelas. Kabel ekstensi menggunakan kawat-kawat dengan jumlah yang sama dengan kondoktur yang dipakai pada Termokopel itu sendiri. Kabel-kabel ini lebih murah daripada kabel termokopel, walaupun tidak terlalu murah, dan biasanya diproduksi pada bentuk yang tepat untuk pengangkutan jarak jauh – umumnya sebagai kawat tertutup fleksibel atau kabel multi inti. Kabel-kabel ini biasanya memiliki spesifikasi untuk rentang suhu yang lebih besar dari kabel termokopel. Kabel ini direkomendasikan untuk keakuratan tinggi. Kabel kompensasi pada sisi lain, kurang presisi, tetapi murah. Mereka memakai perbedaan kecil, biasanya campuran material konduktor yang murah yang memiliki koefisien termoelektrik yang sama dengan termokopel (bekerja pada rentang suhu terbatas), dengan hasil yang tidak seakurat kabel ekstensi. Kombinasi ini menghasilkan output yang mirip dengan termokopel, tetapi operasi rentang suhu pada kabel kompensasi dibatasi untuk menjaga agar kesalahan yang diperoleh kecil. Kabel ekstensi atau kompensasi harus dipilih sesuai kebutuhan termokopel. Pemilihan ini menghasilkan tegangan yang proporsional terhadap beda suhu antara sambungan panas dan dingin, dan kutub harus dihubungkan dengan benar sehingga tegangan tambahan ditambahkan pada tegangan termokopel, menggantikan perbedaan suhu antara sambungan panas dan dingin.

B.  Hubungan Tegangan dan Suhu

Hubungan antara perbedaan suhu dengan tegangan yang dihasilkan termokopel bukan merupakan fungsi linier melainkan fungsi interpolasi polinomial
Koefisien an memiliki n antara 5 dan 9. Agar diperoleh hasil pengukuran yang akurat, persamaan biasanya diimplementasikan pada kontroler digital atau disimpan dalam sebuah tabel pengamatan. Beberapa peralatan yang lebih tua menggunakan filter analog.

C.  Tipe-Tipe Termokopel

1.      Tersedia beberapa jenis termokopel, tergantung aplikasi penggunaannyaTipe K (Chromel (Ni-Cr alloy) / Alumel (Ni-Al alloy)) Termokopel untuk tujuan umum. Lebih murah. Tersedia untuk rentang suhu −200 °C hingga +1200 °C.
2.      Tipe E (Chromel / Constantan (Cu-Ni alloy))
3.      Tipe E memiliki output yang besar (68 µV/°C) membuatnya cocok digunakan pada temperatur rendah. Properti lainnya tipe E adalah tipe non magnetik.
4.      Tipe J (Iron / Constantan) Rentangnya terbatas (−40 hingga +750 °C) membuatnya kurang populer dibanding tipe K
5.      Tipe J memiliki sensitivitas sekitar ~52 µV/°C
6.      Tipe N (Nicrosil (Ni-Cr-Si alloy) / Nisil (Ni-Si alloy)) Stabil dan tahanan yang tinggi terhadap oksidasi membuat tipe N cocok untuk pengukuran suhu yang tinggi tanpa platinum. Dapat mengukur suhu di atas 1200 °C. Sensitifitasnya sekitar 39 µV/°C pada 900°C, sedikit di bawah tipe K. Tipe N merupakan perbaikan tipe K
7.      Termokopel tipe B, R, dan S adalah termokopel logam mulia yang memiliki karakteristik yang hampir sama. Mereka adalah termokopel yang paling stabil, tetapi karena sensitifitasnya rendah (sekitar 10 µV/°C) mereka biasanya hanya digunakan untuk mengukur temperatur tinggi (>300 °C).
8.      Type B (Platinum-Rhodium/Pt-Rh) Cocok mengukur suhu di atas 1800 °C. Tipe B memberi output yang sama pada suhu 0°C hingga 42°C sehingga tidak dapat dipakai di bawah suhu 50°C.
9.      Type R (Platinum /Platinum with 7% Rhodium) Cocok mengukur suhu di atas 1600 °C. sensitivitas rendah (10 µV/°C) dan biaya tinggi membuat mereka tidak cocok dipakai untuk tujuan umum.
10.  Type S (Platinum /Platinum with 10% Rhodium) Cocok mengukur suhu di atas 1600 °C. sensitivitas rendah (10 µV/°C) dan biaya tinggi membuat mereka tidak cocok dipakai untuk tujuan umum. Karena stabilitasnya yang tinggi Tipe S digunakan untuk standar pengukuran titik leleh emas (1064.43 °C).
11.  Type T (Copper / Constantan) Cocok untuk pengukuran antara −200 to 350 °C. Konduktor positif terbuat dari tembaga, dan yang negatif terbuat dari constantan. Sering dipakai sebagai alat pengukur alternatif sejak penelitian kawat tembaga. Type T memiliki sensitifitas ~43 µV/°C

D. Penggunaan Termokopel

Termokopel paling cocok digunakan untuk mengukur rentangan suhu yang luas, hingga 1800 K. Sebaliknya, kurang cocok untuk pengukuran dimana perbedaan suhu yang kecil harus diukur dengan akurasi tingkat tinggi, contohnya rentang suhu 0--100 °C dengan keakuratan 0.1 °C. Untuk aplikasi ini, Termistor dan RTD lebih cocok. Contoh Penggunaan Termokopel yang umum antara lain :
o Industri besi dan baja
o Pengaman pada alat-alat pemanas
o Untuk termopile sensor radiasi
o Pembangkit listrik tenaga panas radioisotop, salah satu aplikasi termopile.

Rabu, 18 Maret 2015

Adiabatik

Proses Adiabatik adalah suatu proses dimana tidak ada kalor yang dibiarkan mengalir kedalam atau keluar system ; Q = 0 . Situasi ini bisa terjadi jika system terisolasi dengan baik, atau proses terjadi dengan sangat cepat sehingga kalor mengalir sangat lambat, tidak memiliki waktu mengalir kedalam atau keluar. Pemuaian gas yang sangat cepat pada mesin pembakaran dalam merupakan salah satu contoh proses yang hamper adiabatic. Pemuaian adiabatic yang lambat dari gas ideal mengikuti kurva seperti gambar yang diberi label AC.
 
 [clip_image002%255B6%255D.jpg]


Karena Q = 0 , kita dapatkan dari persamaan hukum pertama thermodinamika menjadi
 [clip_image004%255B3%255D.gif]

yaitu energy dalam bertambah jika gas memuai , berarti temperature berkurang ( karena[clip_image006%255B3%255D.gif] ). Hal ini jelas dimana hasil kali PV ( = nRT ) lebih kecil pada titik C daripada titik B.

Pada Penekanan adiabatic ( dari C ke A , misalnya ) , kerja dilakukan pada gas, dan dengan demikian energy dalam bertambah dan temperature naik. Pada mesin diesel, campuran bahan bakar dan udara ditekan dengan cepat secara adiabatic dengan factor 15 atau lebih; kenaikan temperature sedemikian besar sehingga campuran tersebut terpicu seketika.

Proses adiabatic sederhana

Ini merupakan contoh proses adiabatic yang bisa anda lakukan dengan sebuah karet gelang saja. Pegang karet gelang secara longgar dengan dua tangan dan ukur temperature dengan bibir anda. Tgengkan karet secara mendadak dan sentuhkan lagi ke bibir anda. Anda akan merasakan bertambahnya temperature . Jelaskan mengapa temperature naik !

Tanggapan
Peregangan karet gelang dengan tiba-tiba berarti melakukan proses adiabatic karena tidak ada waktu bagi kalor untuk masuk atau meninggalkan system , sehingga Q = 0 . Anda melakukan kerja pada system, menandakan masukan energy, sehingga W adalah negative. Berarti clip_image008 positif. Penambahan energy dalam berhubungan dengan penambahan temperature, sehingga karet gelang memanas.


Kerja pada proses isothermal dan Adiabatik

Pada diagaram PV untuk gas yang memuai dengan dua cara , secara isothermal dan adiabatic. Volume VA sama untuk setiap kasus , dan volume akhir sama ( VB = Vc ). Di proses yang mana kerja yang dilakukan gas lebih besar ?

Tanggapan
Kerja yang lebih besar dilakaukan pada proses isothermal. Kita dapat melihat dengan dua cara sederhana . Pertama , tekanan “rata-rata” lebih tinggi selama proses isothermal AB, sehingga [clip_image010%255B3%255D.gif] lebih besar. Kedua , kita bisa melihat dibawah setiap kurva : Luas dareah dibawah setiap kurva AB, yang menyatakan kerja yang dilakukan , lebih besar ( karena kurva AB lebih tinggi ) dari yang dibawah AC.

Turbin Angin


Turbin angin adalah kincir angin yang digunakan untuk membangkitkan tenaga listrik. Turbin angin ini pada awalnya dibuat untuk mengakomodasi kebutuhan para petani dalam melakukan penggilingan padi, keperluan irigasi, dll. Turbin angin terdahulu banyak dibangun di Denmark, Belanda, dan negara-negara Eropa lainnya dan lebih dikenal dengan Windmill.
Kini turbin angin lebih banyak digunakan untuk mengakomodasi kebutuhan listrik masyarakat, dengan menggunakan prinsip konversi energi dan menggunakan sumber daya alam yang dapat diperbaharui yaitu angin. Walaupun sampai saat ini pembangunan turbin angin masih belum dapat menyaingi pembangkit listrik konvensional (Contoh: PLTD,PLTU,dll), turbin angin masih lebih dikembangkan oleh para ilmuwan karena dalam waktu dekat manusia akan dihadapkan dengan masalah kekurangan sumber daya alam tak terbaharui (Contoh : batubara, minyak bumi) sebagai bahan dasar untuk membangkitkan listrik.
Perhitungan daya yang dapat dihasilkan oleh sebuah turbin angin dengan diameter kipas r adalah :
P = \frac{1}{2}\rho\pi R^2 v^3  dimana \rho adalah kerapatan angin pada waktu tertentu dan v adalah kecepatan angin pada waktu tertentu.
Umumnya daya efektif yang dapat dipanen oleh sebuah turbin angin hanya sebesar 20%-30%. Jadi rumus di atas dapat dikalikan dengan 0,2 atau 0,3 untuk mendapatkan hasil yang cukup eksak.
Prinsip dasar kerja dari turbin angin adalah mengubah energi mekanis dari angin menjadi energi putar pada kincir, lalu putaran kincir digunakan untuk memutar generator, yang akhirnya akan menghasilkan listrik.
Sebenarnya prosesnya tidak semudah itu, karena terdapat berbagai macam sub-sistem yang dapat meningkatkan safety dan efisiensi dari turbin angin, yaitu :
1. Gearbox
Alat ini berfungsi untuk mengubah putaran rendah pada kincir menjadi putaran tinggi. Biasanya Gearbox yang digunakan sekitar 1:60.
2. Brake System
Digunakan untuk menjaga putaran pada poros setelah gearbox agar bekerja pada titik aman saat terdapat angin yang besar. Alat ini perlu dipasang karena generator memiliki titik kerja aman dalam pengoperasiannya. Generator ini akan menghasilkan energi listrik maksimal pada saat bekerja pada titik kerja yang telah ditentukan. Kehadiran angin di luar diguaan akan menyebabkan putaran yang cukup cepat pada poros generator, sehingga jika tidak di atasi maka putaran ini dapat merusak generator. Dampak dari kerusakan akibat putaran berlebih diantaranya : overheat, rotor breakdown, kawat pada generator putus karena tidak dapat menahan arus yang cukup besar.
3. Generator
Ini adalah salah satu komponen terpenting dalam pembuatan sistem turbin angin. Generator ini dapat mengubah energi gerak menjadi energi listrik. Prinsip kerjanya dapat dipelajari dengan menggunakan teori medan elektromagnetik. Singkatnya, (mengacu pada salah satu cara kerja generator) poros pada generator dipasang dengan material ferromagnetik permanen. Setelah itu disekeliling poros terdapat stator yang bentuk fisisnya adalah kumparan-kumparan kawat yang membentuk loop. Ketika poros generator mulai berputar maka akan terjadi perubahan fluks pada stator yang akhirnya karena terjadi perubahan fluks ini akan dihasilkan tegangan dan arus listrik tertentu. Tegangan dan arus listrik yang dihasilkan ini disalurkan melalui kabel jaringan listrik untuk akhirnya digunakan oleh masyarakat. Tegangan dan arus listrik yang dihasilkan oleh generator ini berupa AC(alternating current) yang memiliki bentuk gelombang kurang lebih sinusoidal.
4. Penyimpan energi
Karena keterbatasan ketersediaan akan energi angin (tidak sepanjang hari angin akan selalu tersedia) maka ketersediaan listrik pun tidak menentu. Oleh karena itu digunakan alat penyimpan energi yang berfungsi sebagai back-up energi listrik. Ketika beban penggunaan daya listrik masyarakat meningkat atau ketika kecepatan angin suatu daerah sedang menurun, maka kebutuhan permintaan akan daya listrik tidak dapat terpenuhi. Oleh karena itu kita perlu menyimpan sebagian energi yang dihasilkan ketika terjadi kelebihan daya pada saat turbin angin berputar kencang atau saat penggunaan daya pada masyarakat menurun. Penyimpanan energi ini diakomodasi dengan menggunakan alat penyimpan energi. Contoh sederhana yang dapat dijadikan referensi sebagai alat penyimpan energi listrik adalah aki mobil. Aki mobil memiliki kapasitas penyimpanan energi yang cukup besar. Aki 12 volt, 65 Ah dapat dipakai untuk mencatu rumah tangga (kurang lebih) selama 0.5 jam pada daya 780 watt.
Kendala dalam menggunakan alat ini adalah alat ini memerlukan catu daya DC (Direct Current) untuk meng-charge/mengisi energi, sedangkan dari generator dihasilkan catu daya AC (Alternating Current). Oleh karena itu diperlukan rectifier-inverter untuk mengakomodasi keperluan ini. Rectifier-inverter akan dijelaskan berikut.
5. Rectifier-inverter
Rectifier berarti penyearah. Rectifier dapat menyearahkan gelombang sinusodal(AC) yang dihasilkan oleh generator menjadi gelombang DC. Inverter berarti pembalik. Ketika dibutuhkan daya dari penyimpan energi(aki/lainnya) maka catu yang dihasilkan oleh aki akan berbentuk gelombang DC. Karena kebanyakan kebutuhan rumah tangga menggunakan catu daya AC , maka diperlukan inverter untuk mengubah gelombang DC yang dikeluarkan oleh aki menjadi gelombang AC, agar dapat digunakan oleh rumah tangga.